
SOFTWARE & MOBILE DEVELOPMENT • ATLASSIAN EXPERT

DEVOPS ENGINEERING • TEAM AUGMENTATION

The Productive Advantage of the
Python Programming Language

How Python can add value to your business process

Python ranks among the most popular and
fastest growing programming languages.1
It has risen to the top language for coding
education and technical interviews.2
Subsequently, a growing portion of
developers now enter the industry with
Python among the main development tools
at their disposal.

So, should your organization use Python? It
depends on how your company operates.
The language uniquely balances agility
and power, supporting a rich package
library and web ecosystem developed
by a vibrant community, lending itself to
many different business processes. This
wide array of specialized features, along
with its easy setup and natural, succinct
syntax, empower speedy delivery and
maintenance for your company’s continued
convenience.3 This makes Python ideal
for experimentation, rapid prototyping,
scripting, iteration and internal tools in a
variety of problem spaces. Python boasts
particularly powerful packages for data
science, game development and embedded
systems for the Internet of Things as
well as supporting web frameworks in
widespread use throughout a variety of
different kinds of businesses.

Python’s general purpose and ease of use
does not preclude its performance and
scalability. In fact, huge development teams
employ Python to build products, services

How Python can add value to
 your Business Process

and experiences that serve millions of
users every day. In fact, this program
exemplifies built-in assets that can enhance
how a business functions, even when its
verified weaknesses are taken into account.
As a rule, a programming language’s
optimal performance is usually evaluated
in terms of compute-bound versus I/O
bound regimes. Due to certain language
design choices, Python does at first appear
less performant for certain compute-
bound applications at scale. However,
today’s applications are usually I/O bound
anyway and a well-informed developer
can manageably optimize around any of
Python’s performance drawbacks.

PAGE 2

The Pythonic Approach

Python is primarily object-oriented (OO),
representing all data as objects such
that one can pass around structures,
functions or modules all in the same
context. However it is multiparadigm,
supporting procedural and functional
styles as well. Developers coming from
chiefly OO languages can maintain OO’s
modular design patterns, switching to the
procedural form in cases such as executing
simple print statements or functional for
MapReduce applications.

http://pypl.github.io/PYPL.html
http://blog.codeeval.com/codeevalblog/2016/2/2/most-popular-coding-languages-of-2016
https://www.codeschool.com/blog/2016/01/27/why-python/

/* Java */
public class HelloWorld
{
 public static void main (String[] args)
 {

 System.out.println(“Hello world!”);
 }
}

“”

/* C */
for (i=0; i < mylist_length; i++)
{
 do_something(mylist[i]);
}

>>> some_list = [1, 2, 3, 4, 5]

>>> reduce(lambda x, y: x*y, filter(lambda x: x>0, map(lambda x: x - 1, some_list)))4

24

Example 1: OO vs. procedural style for printing “Hello, world!”

Example 3: Python syntax strives to read like natural English

Example 2: Compute the product of all the numbers 1 less than the elements in a list,
 excluding any numbers equal to 0

print “Hello, world!” # Python version 2

#Python
for element in mylist:
 do_something(element)6

print(“Hello, world!”) # Python 3

Python’s standard library includes built-in tools for “database functionality, a variety of data
persistence features, routines for interfacing with the operating system, website interfacing,
email and networking tools, data compression support, cryptography, xml support, regular
expressions, unit testing, multithreading, and much more”.5 With these integrated resources
made available for use, your business can take advantage of centralized mechanisms that
are fundamental to so many operations. To be sure, Python’s flexibility allows developers to
achieve different programming tasks within the same language while providing necessary
organizational functions. Its concise syntax closely resembles natural English by expressing
routines through brief, highly readable idioms, referred to as a “pythonic” style. Compare
readability of Python versus C for looping through elements of a list.

PAGE 3

https://blog.startifact.com/posts/older/what-is-pythonic.html
https://www.stat.washington.edu/~hoytak/blog/whypython.html
https://www.stat.washington.edu/~hoytak/blog/whypython.html
https://www.stat.washington.edu/~hoytak/blog/whypython.html
https://www.stat.washington.edu/~hoytak/blog/whypython.html

>>> a = 9
>>> b = «9»
>>> str(a) + b
‘99’
>>> a + int(b)
18
>>>

Example 4: Use simple typecasting to switch
 between concatenation and

summation sense of the “+”
operator

In natural English, we learn predicates like
“add” to describe actions on numbers, but
readily apply the same sense of meaning
when we “add” groceries to our shopping
cart. By analogy, Python’s natural grammar
derives from predicates, which don’t
depend on the type of subject. From its
dynamic typing system, Python derives
language polymorphism: methods adapt
to the type of data they process. Statically
typed languages require explicit type
declaration for all variables. In Python,
everything has an implicit type assigned by
the object it binds to as a rule. Variables
simply point to addresses in memory.
We can reassign variables to objects of
a different type at any time and Python
simply replaces the value referenced by
the variable’s address with the new object.
Objects can have any type and Python
containers, such as lists or dictionaries,
may store objects of any kind. No type
declarations (and simple typecasting
methods) make Python faster to write or
easier to read.

So why does the natural English syntax
matter for your business? It’s important
because your business will enjoy more
effective functions that are streamlined
and easily adaptable. The integration of
universally recognizable English makes
Python more intuitive, and accessible to its
users.

Furthermore, since Python methods
check types implicitly and not based on
the variable itself, the same function
can take arguments of different types.
Objects perform operations themselves so
methods can fulfill the same operations,
regardless of input type. Programs also
avoid compilation errors due to type
incompatibility without having to cover
every possible type case separately. The
following secret number game does not
compile in Rust due to a comparison
between strings and integers. But the
Python program executes unhindered,
reads easily and can handle type errors at
runtime. Thus, background processes will
not slow you down.

PAGE 4

// Rust
extern crate rand;
use std::io;
use std::cmp::Ordering;
use rand::Rng;

fn main() {
 let secret = rand::thread_rng().gen_range(1, 101);

 println!(“Please guess secret number”);
 println!(“Hint: secret number is {}”, secret);
 println!(“Please input your number”);
 let mut guess = String::new();
 io::stdin()
 .read_line(&mut guess)
 .expect(“failed to read”);
 println!(“your guess is: {}”, guess);

 match guess.cmp(&secret) {
 Ordering::Less => println!(“too small”),
 Ordering::Greater => println!(“too big”),
 Ordering::Equal => println!(“you win!”)
 }
}

#Python
import random
use six because input behaves differently in Python 3 and 2
import six

def main():
 secret = random.randint(1, 101)
 print(“Guess secret number”)
 print(“Hint secret number is {}”.format(secret))
 guess = six.moves.input(“please input your number”)
 print(“Your guess is {}”.format(guess))

 def compare(guess, secret):
 if guess == secret:
 print(“you win”)
 elif guess > secret:
 print(“too big”)
 elif guess < secret:
 print(“too small”)

 compare(guess, secret)

if __name__ == “__main__”:
 main()

Example 5: Python enjoys
forgiving yet
informative error
handling7

Python’s expressiveness
brings its mental and
labor overhead down
significantly. An open-
source language with strong
community support, Python
sets up in seconds and can
run lines of code directly in
terminal via its interpreter.
Due to Python’s brevity,
readability and developer-
friendliness that makes is
so quickly iterable, some
estimates argue Python
makes developers 5 to 10
times more productive.8
This productivity will carry
over to your organization,
increasing its overall
efficiency.

PAGE 5

https://pawelmhm.github.io/python/static/typing/type/annotations/2016/01/23/typing-python3.html
https://pawelmhm.github.io/python/static/typing/type/annotations/2016/01/23/typing-python3.html
https://pawelmhm.github.io/python/static/typing/type/annotations/2016/01/23/typing-python3.html
https://pawelmhm.github.io/python/static/typing/type/annotations/2016/01/23/typing-python3.html
https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/

Python’s expressive, easily iterable nature
makes it highly suited to rapid prototyping,
proofs of concept and internal tools easily
adaptable to shifting operational needs. For
these essential reasons, Python is routinely
used to facilitate tasks for a wide variety
of businesses in numerous industries. The
following case study offers key insights
into why Python has the capacity to make
such a profound difference in the way
companies operate.

At one research biopharmaceutical
firm with 54,000 employees worldwide,
experimental chemists use computational
models to identify compounds as
potentially effective medicine. Historically,
every prediction technique ran on a
separate program, each with its own set
of inputs, options and error handling.
Unable to work with these concepts
themselves, experimenters had to wait
on computational chemists to run routine
models on their behalf.

The firm wanted experimenters to run their
own predictions, freeing the computational
chemists to turn research over to their
lab faster. Part of the company had a
previously successful experiment in
this regard by fronting their system of
computational Perl scripts with a web-
based interface. They used Python to

refactor the backend, optimizing for
reusability, maintainability and robustness.
The firm understood Python was ideal for
physical scientists without a specialized
coding background. Python was designed
to be easy to learn and use for the novice
programmer yet powerful enough to tackle
real-world challenges met by professional
programmers. This results in a language
that scales from short scripts written by
chemists to large packages engineered
by dedicated developers. (Refer to the
“Scython” section on page XX for more on
scientific computing in Python.)

Python’s focus on learnability facilitated
easy error handling aided the newly
refactored process. Perl suppresses error
messages except with explicit checks,
adding keystrokes, cognitive overhead and
more tricky tests. By contrast, Python raises
an exception with any execution issue,
including the complete stack traceback,
helping quickly identify and fix problems
without reliance on extra debugging tools.
For instance, a prediction program, which
normally returned numerical error values,
would sometimes return simple “error”
strings. Perl would automatically convert
these results to 0 integers.

Python for Scripting and Prototyping: 	
			 Biopharmaceutical Firm Case Study

PAGE 6

https://www.paypal-engineering.com/wordpress/wp-content/uploads/2014/12/cpp_py_medium.png

The previous system would recognize these
returns as valid, propagating faulty results.
On the other hand, due to Python’s strong
typing system, which clearly distinguishes
between None, 0, and the empty string, the
new process revealed the bug as soon as it
occurred.

Furthermore, Python’s typing gave the
new process previously impossible
levels of extensibility. To reuse results
for molecular properties engaged in
other property calculations, the program
developed a manager, a dictionary-like
object which caches property results
and maps properties to their relevant
prediction function. The now streamlined
system could now handle all current and
future prediction methods while remaining
easily understandable and maintainable.
Python’s dynamic typing meant this
system could mix properties represented
as numbers, strings, containers or class
instances while its strong typing fostered
easy type checking to eliminate mismatch
errors quickly. The process’s user-defined
predictions feature benefitted from
Python’s arithmetic expressions, which
look almost exactly like scientific formula,
combined with its built-in eval() function.
Overall, the 5,600-line project took 3
months to develop, and another 3 to QA
and document.

As the above example demonstrates,
Python has the ability to adapt to an
organization’s unique needs. Its built-in
error-checking and prediction tools are
intuitive and powerful, allowing even
novice programmers to jump in and tackle
important business challenges.

In basic terms, Python achieves great
success at quickly adapting critical
components of internal and enterprise
systems to changing needs. However,
the language possesses vast power
beyond scripting and rapid prototyping
with huge teams developing large-scale,
sophisticated, general purpose applications
in every space. Recall from the introduction
that Python’s shortcomings manifest
mostly in compute-bound applications.
Applications such as Google’s Search
and App Store tend to use Python as
“glue” for communication among the
more computationally intensive system
components. By contrast, YouTube, by any
metric a compute-intensive application
at scale, runs primarily on Python. A
conscientious developer can always
achieve performant software in Python,
often in less time and usually with less code
than in Java or C++ due to its penchant for
quick iteration.9

Python Performance

PAGE 7

Generally speaking, Python development
teams must balance programming
efficiency with performance. Based on our
experience, labor will usually present a
project’s largest cost until its later stages
of growth. Therefore, Python’s productivity
puts it at a potential advantage over more
performant languages when starting a
project. To strategize language use as a
project scales, such that huge dev teams
the likes of Dropbox, PayPal, JPMorgan
and Bank of America can use Python as a
core technology, we need to examine its
execution.

Python’s speed will depend on
its implementation. In its native
implementation, CPython, programs are
compiled into bytecode and then executed
with an interpreter. This gives Python
applications more platform independence
since translation happens on the final
machine. In fact, Java’s virtual machine
(JVM) interprets Java bytecode into native
machine code to make its applications
effective on a cross-platform basis.
Interpretation also lends flexibility to the
development process: changes to source
code execute immediately, exposing bugs
and integrating new features quicker. The
edit-interpret-debug development cycle
outperforms the edit-compile-run-debug
cycle.

However, interpretation generally
executes slower than compilation since
it must translate code into machine code
subroutines. Unpacking Python objects
takes more computational steps than
executing assembly, adding runtime

overhead. To overcome this, Python’s
PyPy implementation uses just-in-time (JIT)
compilation, which dynamically analyzes
code to execute it using an optimal
balance of ahead-of-time compilation
and interpretation. PyPy approaches and
in some cases outperforms compiled
languages.10

Additionally, Python’s numpy package
can outperform corresponding naive
implementations in C/C++ for fundamental
algorithms like matrix multiplication1112 and
standard deviation.13

Performance analyses should also consider
type system. Dynamically typed languages
can only reveal type errors at runtime,
slowing code inspection and debugging
for sufficiently complex systems in most
cases. To avoid type errors, type checks
must occur at each runtime instance
rather than once at compile time, adding
computational overhead. The Cython
implementation uses static typing to
combine its performance gains with
Python’s expressiveness.

In order for your business to achieve the
best results, it’s critical to use side-by-side
performance benchmarking to compare
optimized CPython, PyPy, and Cython
implementations against other compiled
or statically typed languages. For compute-
intensive components not fast enough in
Python, you can choose more performant
language to rewrite in where savings from
performance gains surpass the cost of
lower productivity.

PAGE 8

https://morepypy.blogspot.com/2011/08/pypy-is-faster-than-c-again-string.html
http://notes-on-cython.readthedocs.io/en/latest/std_dev.html

The term “Scython” is often used to refer
to Python’s rich collection of packages for
data analysis and scientific computing.
Python has grown in use for data
science with 54% of O’Reilly Data Science
Survey respondents saying they chose
Python in 2016 versus 51% in 2015.15
The standard library sqlite3 facilitates
easy transition from SQL for relational
database programming. Numpy, Scython’s
foundational third-party library, which
provides an optimized N-dimensional array
object and C/C++ and Fortran integration,
comes in the SciPy stack along with pandas
for data mining, scikit-learn for machine
learning and other core packages.

In order to provide maximum benefits to
your business, you can use networkx for
graph storage, analysis and visualization
or nltk to analyze text with natural
language processing. Python’s extensive
set of data science libraries have led firms
like Continuum and Enthought to focus
solely on Python and DataCamp to offer
a dedicated Python course. The approach
taken by these large corporations can also
apply to your business, offering further
advantages for company performance.

These data crunching abilities, its ease of
use and cross-compatibility, have made
Python the fastest growing language for
embedded systems and the Internet of
Things, including the official language for
Raspberry Pi.16 Since embedded systems
are often developed by young coders or
hobbyists, Python’s superlative popularity
in computer science education indicates
this growth will continue. Your company
can also be strengthened by the embedded
systems that are integral to Python’s
foundation. Consider employing Python’s
readability of script communication to and
between systems for user configuration or
automated testing.

Scython Embedded Systems

Specialized Libraries & Frameworks
PyPI, Python’s package index, contains over 80,000 modules, which Python interfaces with in “a
human-friendly way.”14 In essence, this means your organization can save time by reusing code
from these modules to make Python even more productive.

PAGE 9

https://www.continuum.io/blog/developer-blog/learning-python-data-science-cheat-sheets
https://www.continuum.io/blog/developer-blog/learning-python-data-science-cheat-sheets
https://opensource.com/life/16/8/python-vs-cc-embedded-systems
https://opensource.com/life/16/8/python-vs-cc-embedded-systems
https://opensource.com/life/16/8/python-vs-cc-embedded-systems

Many widely used web frameworks,
including Django, Flask, Tornado and
Pyramid, run on Python. Django powers
Eventbrite, Instagram (80 million users)
and Disqus. It serves 8 billion page views a
month, 45k requests a second17 and scaled
from 250M to 500M users on the same 100
boxes, which run on Django. Twilio, Netflix,
LinkedIn and Uber have selected Flask for
microservices and internal applications.
Quora, bit.ly and hipmunk chose Tornado.
Pinterest (20M users) combines all three,
running Tornado in Django instances18 and
employing Flask for its API. Pyramid helps
power cars.com, Yelp, and Mozilla.19 Your
company can also benefit from the model
set by these major corporations, taking
full advantage of the web frameworks for
improved strategic positioning.

Web Frameworks

In conclusion, the next time you try to
innovate or improve a business process
at your organization, write the technology
to power it in Python. Its ease of use,
adaptability, and growing popularity will
ensure that your entire workforce, from
experienced professional developers to
fresh technical hires to intrapreneurs
in non-technical departments, will love
to build, maintain and engage with this
versatile tool. Designed to optimally
balance learnability, expressiveness
and power at optimal levels, Python can
quickly take experimental solutions from
rapid prototype to full-fledged product in
the same language. All of these features
combine seamlessly into a language that
offers unparalleled productivity. Coding
your next project in Python will bring its
labor overhead, giving your innovation
strategy a competitive advantage both
now and for the foreseeable future.

Python for
Your Organization

PAGE 10

https://blog.disqus.com/scaling-django-to-8-billion-page-views
http://www.revolunet.com/static/django-success-stories/#10
https://trypyramid.com/community-powered-by-pyramid.html

With over a decade of proven success delivering innovative custom software solutions,
Chicago-based Sphere builds solutions in software, web, mobile and big data analytics while
ensuring the highest level of customer service and satisfaction. Sphere provides unparalleled
project management and thought leadership, forming a true partnership with each and every
client. In addition, Sphere’s deep technical acumen includes Python, Ruby on Rails, Scala,
Go, Polymer, Clojure, .NET, Java, Node.js, React.js (to name just a few), and a broad range of
industry experience as well.
						
Sphere believes in complete transparency, open collaboration and communication, including
open client access to the same internal collaboration tools used by our development team.
Furthermore, Sphere provides full client access to project status updates and source code.

http://pypl.github.io/PYPL.html
http://blog.codeeval.com/codeevalblog/2016/2/2/most-popular- 	
coding-languages-of-2016
https://www.codeschool.com/blog/2016/01/27/why-python/
http://stackoverflow.com/questions/27222193/clean-code-for-	
sequence-of-map-filter-reduce-functions
https://www.stat.washington.edu/~hoytak/blog/whypython.html
https://blog.startifact.com/posts/older/what-is-pythonic.html
https://pawelmhm.github.io/python/static/typing/type/		
annotations/2016/01/23/typing-python3.html
https://pythonconquerstheuniverse.wordpress.com/2009/10/03/ 	
python-java-a-side-by-side-comparison/
https://www.paypal-engineering.com/wordpress/wp-content/	
uploads/2014/12/cpp_py_medium.png
https://morepypy.blogspot.com/2011/08/pypy-is-faster-than-c-
again-string.html

1.
2.

3.
4.

5.
6.
7.

8.

9.

10.

11.

12.

13.
14.

15.

16.

17.
18.
19.

http://stackoverflow.com/questions/10442365/why-is-matrix-	
multiplication-faster-with-numpy-than-with-ctypes-in-python
http://stackoverflow.com/questions/41365723/why-my-python-	
numpy-code-is-faster-than-c
http://notes-on-cython.readthedocs.io/en/latest/std_dev.html
https://opensource.com/life/16/8/python-vs-cc-embedded-	
systems
https://www.continuum.io/blog/developer-blog/learning-python-	
data-science-cheat-sheets
https://opensource.com/life/16/8/python-vs-cc-embedded-	
systems
https://blog.disqus.com/scaling-django-to-8-billion-page-views
http://www.revolunet.com/static/django-success-stories/#10
https://trypyramid.com/community-powered-by-pyramid.html

To find out how Sphere can help your business reach peak performance, contact us on our
website at www.sphereinc.com

About Sphere Software

PAGE 11

